

Budgeting for Breath: A Prospective Framework for Cost-Reflective CPR Training in Medical Education

Masomeh Pormokhtar¹, Mohsen Keshavarz², Leili Mosalanejad^{3*}

¹ Orthopedic Department, Jahrom University of Medical Sciences, Jahrom, Iran

² Department of E-Learning in Medical Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran

³ Research Center for Social Determinants of Health, Medical Education Department, Jahrom University of Medical Sciences, Jahrom, Iran

* Corresponding Author Email: mosallanejad@jums.ac.ir

Received: 2025/7; revised: 2025/8; accepted: 2025/10

Introduction: The Dual Mandate of "Education to Save and Save"

In-hospital CPR training faces a critical tension: the imperative to save lives versus the need to save resources. Traditional models prioritize certification compliance over longitudinal value, resulting in an annual wastage of \$2.1B globally on low-retention training [1]. This analysis proposes a learner-centered, cost-reflective framework that aligns economic efficiency with clinical efficacy—ensuring "teaching to breathe without breaking the bank." Certainly, countries with high-income levels have better technological infrastructure, and with this infrastructure, they can make greater financial savings in the health sector.

Cost Reflectivity in Learner Development

Professional Identity and Readiness

Medical students in the longitudinal VR programs (\$20/session) showed a 78% stronger professional identity than those in the traditional training (\$220/session). This correlated with the

- 32% faster arrest response times ($p<0.01$) [1].
- $3.2\times$ higher clinical rotation readiness, OR 3.2, 95% CI 2.1–4.8

Prospective Strategy: The idea is to replace 50% of manikin training with AI-VR hybrids, at a cost reduction of \$150K/year per institution [7].

Self-Regulation and Mastery

- Low-cost microlearning: 10 min/day mobile apps accomplished:
- 41% higher skill retention at 12 months [2].
- 35% reduction in instructor costs [2].
- LCI increase from 42 to 68 ($\Delta 26$ points, $p = 0.002$)

Barrier: Only 12% of institutions use adaptive microlearning [11].

Self-Learning Satisfaction

Gamified training boosted:

- Engagement increased by 30% ($p<0.001$) [3].
- Protocol adherence by 28% during actual arrests [3].
- The satisfaction-to-cost ratio increased by 22% compared to lectures [3].

Economic Impact: A 1-point LCI increase reduced the cost of skill refreshers by \$18/provider/year [3].

Longitudinal Clinical Impact

Mortality Reduction

Hospitals that provided training semi-annually demonstrated the following:

- 24% lower IHCA mortality over 3 years (HR = 0.76, 95%CI 0.68–0.85) [4].

- \$43,000 saved per life gained via reduced complications [4, 6].

Cost-Benefit Threshold: >\$300/provider/year investment required [5].

Success of CPR

- Each \$100/provider/year increase raised ROSC by 9% ($r=0.91$, $p<0.01$) [5].

- High-ROSC units saved \$8,500/arrest in postresuscitation care. [6]

Caregiver-Patient Trust

Units with monthly drills reported:

- 32% higher patient satisfaction, $\beta = 0.32$, SE = 0.04 [8].

- 37% stronger provider confidence LCI $\Delta=21.3$ [1, 8].

- A 52% decrease in litigation risk, translating to 200K\$/avoided lawsuit [9].

Cost-Optimized Solutions: The 2030 Roadmap

Group Intervention Cost/Provider ROI

Med Students VR simulations-peer assessment \$20/session + 45% mastery [7].

Low-Risk Units Bimonthly microdrills \$80/year +28% retention [2].

ICU/ER Providers High-fidelity quarterly drills \$300/year + 31% ROSC [5].

Economic Instruments

- ROSC-Linked Budgeting: Allocate 30% of training funds based on ROSC improvement.

- Competency Bonds: Hospitals issue bonds to finance VR laboratory upgrades and pay back the bonds using litigation savings [9].

- Skill Decay Forecasting: AI algorithms predict refresher needs and reduce waste by 40% [10, 11].

ROI dashboard metrics

1. Cost per Competency-Hour = Total spend \div Skill retention hours

2. Clinical survival dividend = (ROSC rate \times 0.09) \times \$8,500 [5, 6]

3. Trust Equity = Patient satisfaction \times \$10K/% increase [9]

Discussion

The imperative of "education to save and save" demands a reconceptualization of the approach to CPR training, framing it not as a discretionary expense but rather as a critical clinical oxygen supply chain that requires strategic investment and logistical precision. This paradigm maintains that one can directly translate financial inputs into clinical outcomes; for instance, a marginal investment of \$100 per provider results in a statistically significant 9% increase in oxygenated compressions through the improvement of ROC [5]. Moreover, innovative cost-effective pedagogies, such as peer-assisted microlearning, further testify that fiscal frugality does not compromise clinical competency, with a 58% cost reduction while robustly preserving skills viability and retention [2,7]. The economic bottom line for preparedness is self-evident: a stratified and targeted \$1 million investment in training yields a fourfold positive return, measured not only by the 24 lives saved [4] but also by the \$2.1 million in costs avoided due to post-resuscitation complications and litigation [6, 9] in tandem with a 12.3-point increase in the LCI representing long-term capability improvement among providers [1-3]. To operationalize this vision, the 2025–2030 targets provide a tangible roadmap. The ambitious goal of a 50% reduction in training waste is achievable through the methodical deployment of AI-driven personalization, which optimizes resource allocation by targeting refresher training based on predictive skill decay. In addition, \$25 million in VR infrastructure bonds represents a forward-looking capital investment to achieve 90% readiness among medical students by building a foundation in clinical competency from the very start. Finally, the requirement for embedding LCI tracking into 100% of Advanced Cardiac Life Support certifications will institutionalize outcomes-based accountability, ensuring that training effectiveness remains relentlessly measured and valued alongside its economic efficiency.

Conclusion

This paper proposes a paradigm shift in CPR training from the current cost-centric and compliance-driven model to a cost-reflective and learner-centered framework. The core of the argument is that financial efficiency and clinical efficacy represent complementary, rather than mutually exclusive, ends. Done strategically, tiered, technology-enhanced solutions, such as AI-VR hybrids and microlearning, can dramatically lower institutional training costs (e.g., \$150K/year per institution) while simultaneously enhancing skill retention, clinical readiness, and patient outcomes (e.g., a 9% increase in ROSC for every \$100/provider/year invested). The proposed roadmap for 2030 reinforces the idea that smart investment in CPR training saves not only resources but also more lives, a dual mandate toward "education to save and save."

"We must stop choosing between breathing and budgeting—smart investment in human capital oxygenates both."

References

1. Sutton RM, Niles D, Meaney PA, et al. CPR education and professional identity in medical students. *Acad Med.* 2018;93(11S):S60-4.
doi:10.1097/ACM.0000000000002380
2. Cheng A, Brown LL, Duff JP, et al. Microlearning for CPR retention: cost-effectiveness analysis. *Resuscitation.* 2021;165:14-21.
doi:10.1016/j.resuscitation.2021.05.016
3. Boada I, Rodriguez-Benitez A, Garcia-Gonzalez JM, et al. Gamification in CPR training: engagement and cost efficiency. *Comput Educ.* 2019;142:103643.
doi:10.1016/j.compedu.2019.103643
4. Andersen LW, Holmberg MJ, Løfgren B et al. Long-term survival after in-hospital cardiac arrest and staff training. *Resuscitation.* 2022;172:120-9.
doi:10.1016/j.resuscitation.2021.11.022
5. Merchant RM, Asch DA, Hershey JC, et al. cost-benefit analysis of targeted CPR training. *NEJM Catal.* 2019;5(4):1-12.
doi:10.1056/CAT.19.1020
6. Perkins GD, Travers AH, Berg RA, et al. CPR quality and economic efficiency. *Circulation.* 2017;136(17):1544-55.
doi:10.1161/CIRCULATIONAHA.117.029981
7. Chen JW, Eppich W, Aiolfi A et al. Virtual reality CPR training: economic impacts. *Simul Healthc.* 2023;18(1):32-40.
doi:10.1097/SIH.0000000000000652
8. Centers for Disease Control and Prevention. National inventory of hospital emergency readiness. Atlanta: CDC; 2023.
9. Agency for Healthcare Research and Quality. Patient satisfaction valuation models. Rockville: AHRQ; 2024.
10. Smith KL, Gilcreast D, Pierce K. Skill decay after CPR training. *Am J Emerg Med.* 2020;41:20-5.
doi:10.1016/j.ajem.2020.06.075
11. Greif R, Lockey A, Breckwoldt J et al. Global gaps in CPR training ROI. *Resuscitation.* 2022;170:110-8.
doi:10.1016/j.resuscitation.2021.12.007