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Abstract

The rapid growth of Artificial Intelligence (Al), especially Large Language Models (LLMs), fuels digital
transformation but raises computational demand, making data centers major energy users and emission sources. The
Information and Communication Technology (ICT) sector contributes 2-4% of global emissions. Assessing Al’s
carbon footprint is vital for sustainability and policy planning. This narrative review systematically searched Scopus,
Web of Science, PubMed, ScienceDirect, and Google Scholar from January 2019 to October 2025. Keywords
related to Al, data centers, carbon, greenhouse gas emissions, and green Al were combined using Boolean operators.
Included studies covered original research, reviews, and technical reports on measuring or mitigating Al’s carbon
footprint. Studies focused only on AI’s environmental applications or hardware design were excluded. Data were
qualitatively categorized and analyzed. AI’s carbon footprint arises from the full model lifecycle—including
embodied carbon, training, inference, and end-of-life—along with growing computational demand, hardware
efficiency, and geographic carbon intensity variations. Currently, 369 generative models emit 10-18 million tons of
CO: annually, projected to reach 245 million tons by 2035. Efficient architectures like Mixture-of-Experts (MoE)
can reduce energy use tenfold; Tensor Processing Units (TPUs) are about 50% more efficient than GPUs; and data
centers with a Power Usage Effectiveness (PUE) of 1.1-1.4 outperform those above 1.6. Geographic location can
cause 5- to 10-fold differences in carbon intensity. Green Al techniques—such as knowledge distillation,
quantization, data optimization, renewable energy, and tools like Code Carbon—can cut emissions by up to three
orders of magnitude.

Al’s growing carbon footprint challenges the shift to a low-carbon economy. Mitigation requires Green Al,
transparency, standardized metrics, and efficient data centers. Sustainable Al depends on collaboration among
researchers, industry, and policymakers, with sustainability as a key principle.
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Introduction

Recently, Artificial Intelligence (Al) has
evolved from an academic research domain into
a transformative technology impacting nearly all
aspects of human activity (1). This rapid
advancement, however, has been accompanied
by significant environmental costs (2). As Al
models, particularly large language models
(LLMs), become more complex and
computationally intensive, the demand for large-
scale processing power has grown exponentially
(3). These substantial computational workloads
are executed in energy-intensive data centers,
which have emerged as major consumers of
electricity worldwide (4, 5).

The energy required to operate such facilities
directly translates into Greenhouse Gas (GHG)
emissions, intensifying the global climate crisis
(6-8). The Information and Communication
Technology (ICT) sector, with Al as a rapidly
expanding component, accounts for
approximately 2-4% of global GHG emissions
(9, 10). This share is comparable to that of the
aviation industry and is projected to rise further
as Al adoption continues to accelerate (11).
Training a single large Natural Language
Processing (NLP) model has been estimated to
generate carbon emissions equivalent to the
lifetime emissions of five automobiles. This
amounts to roughly 300,000 kilograms of COs-,
equivalent to about 125 round-trip flights
between New York and Beijing (12). These
alarming statistics highlighted scientific and
public attention to the carbon footprint of Al
systems (13, 14).

This recognition has created a compelling
duality. On one hand, Al holds considerable
potential to support climate mitigation efforts
(15), for instance, through optimizing power
grids, improving climate modeling, and enabling
the design of low-carbon infrastructure (16, 17).
On the other hand, the technology itself has
become an emerging source of carbon emissions
(18, 19). The trend in which increasingly large
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and resource-intensive models are developed to
achieve  marginal  improvements.  Some
researchers have called this approach Red Al,
where accuracy gains come at the cost of
massive computational consumption (20, 21).
This term describes approaches in which
enhanced model performance is
disproportionately associated with higher energy
use and elevated carbon emissions; for example,
training state-of-the-art NLP architectures can
emit up to 626,000 pounds of CO2, comparable
to the annual emissions of 125 passenger
vehicles (22). In response, a counter-movement
termed Green Al has emerged, emphasizing the
development of models that balance innovation
with computational efficiency and
environmental sustainability (23-25). Advocates
of Green Al argue for the incorporation of
energy efficiency and carbon accountability as
primary evaluation metrics, alongside accuracy.
They also recommend mandatory reporting of
energy consumption and carbon footprint to curb
the unsustainable scaling of model sizes (24).

The carbon footprint of Al is a major
challenge in the digital era. This review aims to
synthesize existing evidence on greenhouse gas
emissions from data centers throughout the Al
lifecycle, considering technical, environmental,
economic, and societal aspects.

This study aims to identify key factors
influencing Al-related emissions and to evaluate
practical strategies to reduce the environmental
impact of Al technologies. Focusing on moving
from  high-consumption  to  sustainable
architectures, this review presents a framework
to expose hidden computational costs in Al
systems. Unlike prior reviews on the ICT sector
or hardware efficiency, this study synthesizes
the full lifecycle carbon footprint of Generative
Al and Large Language Models (LLMs),
including embodied carbon, training, and
inference. It also evaluates the environmental
trade-offs of emerging architectures like
Mixture-of-Experts (MoE), linking technical
optimization with environmental policy.
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Materials and Methods

This systematic narrative review was
conducted using a structured search strategy.
Scopus, Web of  Science, PubMed,

ScienceDirect, and Google Scholar were
searched for articles published between January
2019 and October 2025. The initial search
identified 450 records. After removal of 120
duplicates and screening of titles and abstracts
for relevance, 55 studies were included in the
final review.

Studies were prioritized if they reported
quantitative data on carbon dioxide (COz)
emissions or specific energy metrics, including
Power Usage Effectiveness (PUE) and floating-
point operations per second (FLOPS). Editorial
commentaries without quantitative data were
excluded.

The literature search used English keywords
combined with Boolean operators (AND, OR),
including artificial intelligence, carbon footprint,
data center, greenhouse gas emissions,
sustainability, Green Al, energy consumption,
and machine learning.

Eligible studies included review articles,
original research papers, and technical reports
that focused on evaluating, quantifying, or
mitigating the carbon footprint of artificial
intelligence systems. Studies addressing only
environmental applications of Al or limited
solely to hardware-level assessments were
excluded.

Results and Discussion

To ensure consistency, the following
definitions are used throughout this review.
Carbon Footprint refers to the total greenhouse
gas emissions expressed as CO,-equivalent
(CO2e). Embodied Carbon represents emissions
from hardware manufacturing and infrastructure
construction. Training refers to the model
development phase, while Inference denotes the
operational phase where the model generates
predictions.
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A review of the existing literature shows that
the carbon footprint of Al is a multidimensional
issue, stemming from various sources and
shaped by multiple influencing factors. The
main insights can be organized into several key
dimensions:

1. Energy Use and Carbon Emissions in Al

The computational demand for advanced Al
models has grown at an exceptionally rapid pace
(26). According to a comprehensive analysis, the
compute required to train large models doubles
every three to four months, which is faster than
Moore’s Law (27). This exponential increase is
primarily driven by the growth of generative Al
models, which require billions of parameters and
extensive training datasets to yield even
marginal  performance improvements. For
instance, training a state-of-the-art NLP model
can generate as much as 626,000 pounds
(approximately 300,000 kilograms) of CO.. It is
equivalent to the annual emissions of 125
passenger vehicles or roughly 125 round-trip
flights between New York and Beijing (22). A
comprehensive analysis of 369 generative Al
models found that they collectively consumed
between 25 and 41 terawatt-hours (TWh) of
energy and emitted 10 to 18 million metric tons
of carbon dioxide (28). Meanwhile, the United
States and China, both leading actors in this
domain account for more than 99 percent of
these emissions (Figure 1) (29). The ICT sector,
including  Al, currently  accounts  for
approximately 2-4% of global greenhouse gas
emissions, a share comparable to that of the
aviation industry (31). This energy demand
accumulates not only during the training phase
but also often more significantly during
inference. In fact, billions of daily requests can
drive the model’s lifetime energy consumption
beyond that of training (32). Figure 2 illustrates
the primary sources of energy consumption and
carbon emissions. It shows that the adoption and
energy intensity of specialized models are driven
primarily by intrinsic industry characteristics
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rather than economic scale alone.  Critical
factors include data abundance and openness,
privacy  requirements, and  task-model
alignment. Healthcare, for example, despite its
smaller market size compared to finance,
supports highly energy-intensive models due to
rich data availability. Likewise, the legal sector
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Minimum total ener
consumption of large models 1887GWh

Maximum total energy
consumption of large’'models 4447GWh

consumes approximately seven times more
energy than education, despite similar market
scales. This is because legal tasks such as case
analysis and document review are particularly
well-suited to large language models, while
educational data tend to be sparse and
heterogeneous.
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Figure 1. Regional energy consumption and carbon emissions from generative Al models. Bubble size
represents energy use, and color intensity indicates emission levels. Adapted from Ding et al. (2025) (30)
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Figure 2. Energy consumption, carbon emissions, and economies of scale (left) alongside specialized model

characteristics (right). Adapted from Ding et al. (2025) (30)
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Figure 3. Contribution of ICT subsectors to the sector’s total greenhouse gas footprint based on four
independent assessments. Reprinted from Bieser et al. (2023) (31).

Conversely, as shown in Figure 3, Bieser et
al. compared four studies regarding the
proportion of total ICT-sector GHG emissions
attributable to end-user devices, data centers,
and telecommunication networks (31).

According to Figure 3, end-user devices are
the dominant source of greenhouse gas
emissions in the ICT sector, contributing 47—
54% of the total, with substantial additional
contributions  from data centers and
communication  networks.  Projections by
Schneider Electric (2024) show that, under
business-as-usual trends, generative Al could
generate up to 245 million tons of CO.-
equivalent emissions annually by 2035, posing a
serious threat to the achievement of global
decarbonization targets (33-35). The rapid
expansion of Al has rendered the transition from
high-resource to efficient and sustainable
paradigms more critical than ever. While giving
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rise to the “Green AI” movement, an emerging
framework that treats environmental
sustainability as a first-class objective on par
with  model accuracy. The computational
demands of training advanced Al models have
grown at an extraordinary pace (24, 36).
According to one widely cited analysis, the
compute required to train state-of-the-art models
has been doubling roughly every 3-4 months,
far outpacing the 18-month doubling cycle of
Moore’s Law (37, 38). An extensive study of
369 generative Al models estimated total energy
consumption during training and inference at
25-41 TWh, with associated CO: emissions of
10-18 million metric tons (39). Over 99% of
these emissions originate from facilities in the
United States and China, the two leading
countries in  GAIl development (40, 41).
Continued growth at current rates would drive
generative Al’s annual CO: emissions to 245
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million tons by 2035, creating a significant
challenge for worldwide decarbonization goals
(42-44).

2. Environmental Life-Cycle Assessment of
Carbon Emissions from Al Systems

The carbon footprint of an Al system extends
far beyond electricity consumption during
inference; it encompasses the entire lifecycle,
spanning four main phases: embodied (or latent)
carbon, training, inference, and end-of-life.

Embodied carbon  encompasses  the
greenhouse gas emissions associated with raw
material extraction, hardware manufacturing
(e.g., GPUs, TPUs, and servers), and data center
construction prior to system operation (33, 45).
Studies show that manufacturing a single high-
end GPU can emit up to 100 kg of COze, with
emissions reaching millions of tonnes at the
scale of data centers containing thousands of
units (35). Although often overlooked, this
production phase can account for 20-30% of the
total lifecycle carbon footprint in large models
(32).

The training phase is highly energy-intensive
and has been a primary focus of Green Al
research. Training a large language model such
as GPT-3, for example, can consume more than
1,287 MWh of electricity, equivalent to the
annual consumption of approximately 120 U.S.
households, and produce over 550 tons of CO:
emissions (34, 35).

However, the inference phase typically
dominates total energy consumption, owing to
the prolonged and continuous deployment of
models in production environments. Although
individual inference requests require minimal
energy, their aggregation, often in the billions
per day, means that inference can account for
80-90% of a model’s lifetime energy use (46).
For instance, a widely used conversational
system like ChatGPT may consume as much
electricity in a single day as 17,000 average
households (29).
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Finally, the end-of-life phase presents
significant challenges for recycling and
disposing of Al hardware, with recycling rates
remaining low owing to the incorporation of rare
materials and intricate design features (47, 48).
Globally, less than 20% of electronic equipment
is properly recycled, leaving the majority to
become e-waste that releases methane and
heavy-metal contaminants (49). This lifecycle
perspective highlights AI’s carbon footprint as a
systemic issue needing intervention from
hardware design to end-of-life management and
recycling. (24).

3. Main Factors Influencing the Carbon
Footprint of Al Systems

Research has shown that the carbon footprint
of Al systems is highly variable and depends
heavily on technical and infrastructure decisions.
Four primary factors have been identified in this
context:

* Algorithm and Model

Sparsely activated models, such as Mixture-
of-Experts (MoE) architectures, contain billions
of parameters. However, they activate only a
small fraction of the network during each
inference, achieving up to 10x lower energy
consumption than dense models of comparable
accuracy (50, 51). However, implementing MoE
architectures presents specific trade-offs. While
they significantly reduce computational costs,
they require high memory bandwidth to load the
large number of parameters, which can
complicate deployment on standard hardware.
Therefore, the energy savings are most effective
when paired with specialized hardware
optimized for sparse operations. This efficiency
arises from a dynamic routing mechanism,
where a lightweight gating network selects
which expert subnetworks to activate for a
given input. For instance, the Switch
Transformer, with 1.6 trillion parameters,
routes each token to just 2-4 out of 2048
experts, reducing inference-phase energy
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use to roughly one-tenth that of an
equivalent dense model (52). Similarly,
XAl’s Grok-1 MoE model, with 314 billion
parameters, activates only 25% of its
weights per inference, yielding comparable
energy savings and substantially lower
operational carbon emissions (53).

Experimental studies show that this
energy reduction is substantial in both the
inference and training phases, since
gradients are computed only along active
paths. This is because it significantly lowers
the memory required to store them (54). For
instance, the Mixtral 8x7B model, which
employs a Mixture-of-Experts  (MoE)
architecture and outperforms LLaMA-2 70B
in accuracy, consumes just 1/5 of the
training energy and 1/8 of the inference
energy required by the dense model (55).
This paradigm enables green scaling—nbetter
performance without proportional energy
increase—unlike dense models, which
nearly double energy use when parameters
double (56).

Furthermore, combining MoE
architectures with advanced optimization
techniques, such as dynamic quantization
and expert distillation, can improve
inference energy efficiency by up to 15
times (57). When coupled with custom
accelerators designed for distributed training
and inference, these advances mark a
fundamental shift from “red AI” to “green
AI”  (57). Consequently, distributed
architectures have evolved from purely
technical solutions into a core sustainability
strategy for substantially reducing the
gLocal carbon footprint of Al systems (24,
34).

» Hardware
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While algorithmic optimization is vital,
hardware largely determines Al’s carbon
footprint, with over 80% of inference energy and
a significant portion of training energy tied to
processor type and efficiency. Although high-
performance GPUs such as NVIDIA’s A100 and
H100 deliver exceptional computational
capability, they also exhibit considerable power
demands (up to 700 W per unit). Their dense
architectures and high clock frequencies
generate substantial heat, thereby increasing
reliance on energy-intensive cooling systems
(46). Custom accelerators like Google’s TPU v5
and Cerebras CS-2, optimized for matrix
operations and low-precision quantization, can
be up to 50% more energy-efficient than
comparable GPUs (58, 59)

Furthermore, the shift from dense to sparse
architectures has substantial implications at the
hardware level. Accelerators like the Graphcore
IPU and Grog LPU, supporting sparse matrix
multiplication, allow MoE models to use only a
fraction of computational units, cutting power
consumption by up to 70%.(60). This
architectural approach proves effective not only
during inference but also during training, as it
lowers the memory required for gradient storage
and improves overall memory bandwidth
utilization (61). Finally, the embodied carbon of
hardware, emissions associated with raw
material ~ extraction, manufacturing, and
transportation, is becoming an increasingly
significant component of the Al lifecycle.
Producing a single A100 GPU, for example,
generates roughly 120 kg of CO:-equivalent,
which accounts for only about 10% of its total
carbon footprint over an estimated 10,000 hours
of operation (62). By contrast, custom
accelerators manufactured using 3 nm process
technologies and  incorporating  recycled
materials can reduce embodied carbon by up to
30% (63). These advances, along with policies
promoting longer hardware lifespans and
improved e-waste recycling, mark a shift from a
“performance at any cost” approach. This new
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focus on “sustainability by design” offers a
practical framework to reduce AI’s carbon
footprint at the infrastructure level (64).

« Data center efficiency

Beyond the efficiency of individual chips and
models, the broader infrastructure are crucial.
Specifically, data center efficiency is commonly
assessed using the Power Usage Effectiveness
(PUE) index, defined as the ratio of a data
center’s total energy consumption to the energy
consumed directly by its computing equipment
(IT load). While a PUE of 1 represents ideal
efficiency, the global average in 2023 was
approximately 1.58 (65, 66). In contrast, modern
cloud data centers operated by companies such
as Google, Microsoft, and Meta achieve
substantially higher efficiencies, operating up to
1.4 times more efficiently than conventional
facilities with PUE values near 1.59; for
example, Google reported an average PUE of
1.10 in 2024 (67). These improvements stem
from advances like direct-to-chip liquid cooling,
free-air cooling in cold climates, and Al-driven
workload orchestration, which can cut cooling
energy—usually 30-50% of total use—by up to
709%(68).

Lowering PUE significantly reduces
carbon emissions. For example, cutting PUE
from 1.8 to 1.2 in a 100-MW data center can
save about 60,000 tons of CO: annually—
equal to emissions from 13,000 cars (69).
Leading companies use immersion cooling
and waste-heat recovery to heat buildings or
generate electricity. For example, Google’s
Finland facility recovers up to 90% of
thermal energy, supplying heat to the local
district network (70). Also, modular data-
center designs and Al-based predictive load
management allow operators to power down
idle servers, improving peak-shaving
performance by as much as 40% (71).
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Finally, the standardization of PUE and

its transparent reporting as part of
sustainability metrics has become an
industry-wide imperative. Initiatives like

The Green Grid and 1SO 30134 now require
organizations to annually report their PUE

metrics to improve data center energy

efficiency and sustainability. In addition,

platforms such as Google Cloud Carbon
Footprint enable users to estimate carbon

emissions based on actual PUE values (72).
Such
competition among providers to
energy consumption but also empowers
customers to select cloud services with the
smallest carbon footprint.
enhancing data center efficiency has evolved
from a competitive advantage into both an
environmental

transparency not only drives

lower

Consequently,

and economic necessity,
playing a pivotal role in advancing the

objectives of ‘green Al (24, 34).

* Geographic Location and Energy Mix

The power grid’s energy mix and data center

location critically affect AI’s carbon footprint.
CO: emissions per kilowatt-hour can vary 5 to

10 times depending on fossil fuel or renewable

energy dominance (73).

Training a large language model in a wind-

rich region like Iowa (50 g CO2/kWh) produces
a much lower carbon footprint than in coal-
dependent areas like Poland (750 g CO2/kWh)

(74, 75). This disparity accumulates during

training and inference, where a popular model

handling billions of daily requests can emit tens

of thousands of tons less CO: annually when
deployed
technology companies have mitigated their
environmental impact by adopting location-
aware deployment strategies and purchasing

in a low-carbon region. Leading

renewable energy certificates (RECs). For

example, Google has situated more than 90% of

its data centers in regions with a high share of

clean energy, such as Finland, Sweden, and



Abbasnia A. et al.

Research in Health & Medical Sciences. 2024 Mar; 3(1)

Quebec, and has achieved operational carbon
neutrality through renewable power purchase
agreements (PPASs) (76). Microsoft has similarly
reduced emissions by up to 30% by time-shifting
computational workloads to periods of peak
solar and wind power generation. These
practices show that data center location is a key
sustainability strategy, capable of cutting AI’s
carbon footprint by up to 90% and advancing the
shift toward green Al (74).

4. Operational Solutions for Sustainable Al

The Green Al movement promotes practical,
multi-layered strategies to reduce AI’s carbon
footprint across its lifecycle, focusing on
measurement, transparency, and optimization of
models, data, and infrastructure (77). The
foundational step in this process is the precise
measurement and transparent reporting of
energy consumption and associated carbon
emissions. Several tools enable real-time
assessment of Al’s environmental impact by
considering data center PUE, energy mix, and
hardware. Code Carbon is an open-source
Python library that estimates CO2ze emissions by
tracking energy use and regional carbon
intensity. ML CO: Impact offers a framework to
estimate and compare emissions from training
and running models. The Experiment Impact
Tracker similarly records COze emissions per
experiment by monitoring hardware energy
consumption in real time (78, 79).

At the model optimization level, techniques
such as knowledge distillation, pruning,
guantization, and sparse architectures play a
pivotal role. For instance, knowledge distillation
transfers knowledge from a large model
(Teacher) to a smaller model (Student),
potentially reducing energy consumption by up
to 90% while incurring only a 1-2% loss in
accuracy (80, 81). Similarly, data-centric Al
approaches, which emphasize improving data
guality, intelligent feature selection, and active
sampling, can achieve comparable performance
using approximately 50% less data, thereby
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lowering computational demands (82, 83).
Beyond algorithmic strategies, adopting green
infrastructure represents a highly effective
operational measure. Deploying models in data
centers powered entirely by renewable energy
(e.g., Google’s facilities in Finland or
Microsoft’s in Sweden) and utilizing advanced
cooling technologies such as liquid or
immersion cooling can reduce operational
carbon footprints by as much as 95% (84).
Integrating algorithmic optimization,
transparency, and sustainable infrastructure can
reduce AI’s carbon footprint by up to 1000-fold,
creating a strong foundation for sustainable Al
development (34). These measures are not only
environmentally necessary but also provide a
strategic advantage for both industry and the
scientific community (35, 64).

Conclusion

The results of this study demonstrate that the
carbon footprint of Al is substantial and rapidly
increasing. This growth results from rising
computational demand, the Al lifecycle (from
embodied carbon to end-of-life), and
infrastructure factors like data center efficiency,
energy mix, and hardware. As the global
community endeavors to transition toward a
low-carbon economy, the rapid expansion of
such energy-intensive technologies poses a
significant challenge to these efforts.

The findings distinguish “red AL”
prioritizing accuracy at any cost, from “green
AL” which balances efficiency and accuracy—
offering both a challenge and an opportunity to
reshape Al development. A key insight from this
review is the critical role of choice. The carbon
footprint of an Al model is not a fixed, inherent
property but rather the outcome of deliberate
decisions made by researchers and engineers.
Evidence suggests that strategic selection of
algorithms, hardware, data centers, and
geolocations can reduce carbon emissions by up
to three orders of magnitude .This highlights the
promising potential to mitigate environmental
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impacts  without impeding technological
advancement. The Green Al movement provides
a practical framework with strategies for
measurement, model design, data management,
and infrastructure optimization.

Despite  these  advances,  significant
challenges remain. The lack of transparency
among major technology companies regarding
the energy consumption of their operations
complicates efforts to assess the carbon footprint
of the industry as a whole. Additionally, the
research community’s predominant focus on the
model training phase has resulted in relative
neglect of the inference stage, which, at scale,
can account for a substantial portion of

energy use. This study highlights that
sustainability should be considered a
primary evaluation criterion for Al

systems—alongside accuracy, speed, and
cost. Collaboration among scientists,
industry stakeholders, and policymakers is
essential to establish standards for
transparent reporting and to incentivize the
development and deployment of green Al.
Ultimately, the future of Al must not only be

intelligent but also sustainable and
responsible.
Recommendations for Future Work

Based on this review, three immediate

actions are  proposed.  Standardization:
Policymakers should establish standardized
metrics for reporting Al carbon intensity (e.g.,
kg COqe per query). Transparency: Technology
companies should disclose energy mixes and
Power Usage Effectiveness (PUE) data for
specific model training runs rather than relying
solely on annual averages. Inference focus:
Future research should prioritize optimization of
the inference phase, as it accounts for the
majority of lifecycle emissions in widely
deployed models.
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