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Abstract 
 

The rapid growth of Artificial Intelligence (AI), especially Large Language Models (LLMs), fuels digital 

transformation but raises computational demand, making data centers major energy users and emission sources. The 

Information and Communication Technology (ICT) sector contributes 2–4% of global emissions. Assessing AI’s 

carbon footprint is vital for sustainability and policy planning. This narrative review systematically searched Scopus, 

Web of Science, PubMed, ScienceDirect, and Google Scholar from January 2019 to October 2025. Keywords 

related to AI, data centers, carbon, greenhouse gas emissions, and green AI were combined using Boolean operators. 

Included studies covered original research, reviews, and technical reports on measuring or mitigating AI’s carbon 

footprint. Studies focused only on AI’s environmental applications or hardware design were excluded. Data were 

qualitatively categorized and analyzed. AI’s carbon footprint arises from the full model lifecycle—including 

embodied carbon, training, inference, and end-of-life—along with growing computational demand, hardware 

efficiency, and geographic carbon intensity variations. Currently, 369 generative models emit 10–18 million tons of 

CO₂ annually, projected to reach 245 million tons by 2035. Efficient architectures like Mixture-of-Experts (MoE) 

can reduce energy use tenfold; Tensor Processing Units (TPUs) are about 50% more efficient than GPUs; and data 

centers with a Power Usage Effectiveness (PUE) of 1.1–1.4 outperform those above 1.6. Geographic location can 

cause 5- to 10-fold differences in carbon intensity. Green AI techniques—such as knowledge distillation, 

quantization, data optimization, renewable energy, and tools like Code Carbon—can cut emissions by up to three 

orders of magnitude. 

  AI’s growing carbon footprint challenges the shift to a low-carbon economy. Mitigation requires Green AI, 

transparency, standardized metrics, and efficient data centers. Sustainable AI depends on collaboration among 

researchers, industry, and policymakers, with sustainability as a key principle. 
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Introduction 

Recently, Artificial Intelligence (AI) has 

evolved from an academic research domain into 

a transformative technology impacting nearly all 

aspects of human activity (1). This rapid 

advancement, however, has been accompanied 

by significant environmental costs (2). As AI 

models, particularly large language models 

(LLMs), become more complex and 

computationally intensive, the demand for large-

scale processing power has grown exponentially 

(3). These substantial computational workloads 

are executed in energy-intensive data centers, 

which have emerged as major consumers of 

electricity worldwide (4, 5). 

The energy required to operate such facilities 

directly translates into Greenhouse Gas (GHG) 

emissions, intensifying the global climate crisis 

(6-8). The Information and Communication 

Technology (ICT) sector, with AI as a rapidly 

expanding component, accounts for 

approximately 2–4% of global GHG emissions 

(9, 10). This share is comparable to that of the 

aviation industry and is projected to rise further 

as AI adoption continues to accelerate (11). 

Training a single large Natural Language 

Processing (NLP) model has been estimated to 

generate carbon emissions equivalent to the 

lifetime emissions of five automobiles. This 

amounts to roughly 300,000 kilograms of CO₂, 

equivalent to about 125 round-trip flights 

between New York and Beijing (12). These 

alarming statistics highlighted scientific and 

public attention to the carbon footprint of AI 

systems (13, 14). 

This recognition has created a compelling 

duality. On one hand, AI holds considerable 

potential to support climate mitigation efforts 

(15), for instance, through optimizing power 

grids, improving climate modeling, and enabling 

the design of low-carbon infrastructure (16, 17). 

On the other hand, the technology itself has 

become an emerging source of carbon emissions 

(18, 19). The trend in which increasingly large 

and resource-intensive models are developed to 

achieve marginal improvements. Some 

researchers have called this approach Red AI, 

where accuracy gains come at the cost of 

massive computational consumption (20, 21). 

This term describes approaches in which 

enhanced model performance is 

disproportionately associated with higher energy 

use and elevated carbon emissions; for example, 

training state-of-the-art NLP architectures can 

emit up to 626,000 pounds of CO₂, comparable 

to the annual emissions of 125 passenger 

vehicles (22).  In response, a counter-movement 

termed Green AI has emerged, emphasizing the 

development of models that balance innovation 

with computational efficiency and 

environmental sustainability (23-25). Advocates 

of Green AI argue for the incorporation of 

energy efficiency and carbon accountability as 

primary evaluation metrics, alongside accuracy. 

They also recommend mandatory reporting of 

energy consumption and carbon footprint to curb 

the unsustainable scaling of model sizes (24). 

The carbon footprint of AI is a major 

challenge in the digital era. This review aims to 

synthesize existing evidence on greenhouse gas 

emissions from data centers throughout the AI 

lifecycle, considering technical, environmental, 

economic, and societal aspects.  

This study aims to identify key factors 

influencing AI-related emissions and to evaluate 

practical strategies to reduce the environmental 

impact of AI technologies. Focusing on moving 

from high-consumption to sustainable 

architectures, this review presents a framework 

to expose hidden computational costs in AI 

systems. Unlike prior reviews on the ICT sector 

or hardware efficiency, this study synthesizes 

the full lifecycle carbon footprint of Generative 

AI and Large Language Models (LLMs), 

including embodied carbon, training, and 

inference. It also evaluates the environmental 

trade-offs of emerging architectures like 

Mixture-of-Experts (MoE), linking technical 

optimization with environmental policy. 
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Materials and Methods 

This systematic narrative review was 

conducted using a structured search strategy. 

Scopus, Web of Science, PubMed, 

ScienceDirect, and Google Scholar were 

searched for articles published between January 

2019 and October 2025. The initial search 

identified 450 records. After removal of 120 

duplicates and screening of titles and abstracts 

for relevance, 55 studies were included in the 

final review. 

Studies were prioritized if they reported 

quantitative data on carbon dioxide (CO₂) 

emissions or specific energy metrics, including 

Power Usage Effectiveness (PUE) and floating-

point operations per second (FLOPS). Editorial 

commentaries without quantitative data were 

excluded. 

The literature search used English keywords 

combined with Boolean operators (AND, OR), 

including artificial intelligence, carbon footprint, 

data center, greenhouse gas emissions, 

sustainability, Green AI, energy consumption, 

and machine learning. 

Eligible studies included review articles, 

original research papers, and technical reports 

that focused on evaluating, quantifying, or 

mitigating the carbon footprint of artificial 

intelligence systems. Studies addressing only 

environmental applications of AI or limited 

solely to hardware-level assessments were 

excluded. 

Results and Discussion 

To ensure consistency, the following 

definitions are used throughout this review. 

Carbon Footprint refers to the total greenhouse 

gas emissions expressed as CO2-equivalent 

(CO2e). Embodied Carbon represents emissions 

from hardware manufacturing and infrastructure 

construction. Training refers to the model 

development phase, while Inference denotes the 

operational phase where the model generates 

predictions. 

A review of the existing literature shows that 

the carbon footprint of AI is a multidimensional 

issue, stemming from various sources and 

shaped by multiple influencing factors. The 

main insights can be organized into several key 

dimensions:  

1. Energy Use and Carbon Emissions in AI 

The computational demand for advanced AI 

models has grown at an exceptionally rapid pace 

(26). According to a comprehensive analysis, the 

compute required to train large models doubles 

every three to four months, which is faster than 

Moore’s Law (27). This exponential increase is 

primarily driven by the growth of generative AI 

models, which require billions of parameters and 

extensive training datasets to yield even 

marginal performance improvements. For 

instance, training a state-of-the-art NLP model 

can generate as much as 626,000 pounds 

(approximately 300,000 kilograms) of CO₂. It is 

equivalent to the annual emissions of 125 

passenger vehicles or roughly 125 round-trip 

flights between New York and Beijing (22). A 

comprehensive analysis of 369 generative AI 

models found that they collectively consumed 

between 25 and 41 terawatt-hours (TWh) of 

energy and emitted 10 to 18 million metric tons 

of carbon dioxide (28). Meanwhile, the United 

States and China, both leading actors in this 

domain account for more than 99 percent of 

these emissions (Figure 1) (29). The ICT sector, 

including AI, currently accounts for 

approximately 2–4% of global greenhouse gas 

emissions, a share comparable to that of the 

aviation industry (31). This energy demand 

accumulates not only during the training phase 

but also often more significantly during 

inference. In fact, billions of daily requests can 

drive the model’s lifetime energy consumption 

beyond that of training (32). Figure 2 illustrates 

the primary sources of energy consumption and 

carbon emissions. It shows that the adoption and 

energy intensity of specialized models are driven 

primarily by intrinsic industry characteristics 
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rather than economic scale alone.  Critical 

factors include data abundance and openness, 

privacy requirements, and task–model 

alignment. Healthcare, for example, despite its 

smaller market size compared to finance, 

supports highly energy-intensive models due to 

rich data availability. Likewise, the legal sector 

consumes approximately seven times more 

energy than education, despite similar market 

scales. This is because legal tasks such as case 

analysis and document review are particularly 

well-suited to large language models, while 

educational data tend to be sparse and 

heterogeneous.

 

 

Figure 1. Regional energy consumption and carbon emissions from generative AI models. Bubble size 

represents energy use, and color intensity indicates emission levels. Adapted from Ding et al. (2025) (30) 
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Figure 2. Energy consumption, carbon emissions, and economies of scale (left) alongside specialized model 

characteristics (right). Adapted from Ding et al. (2025) (30) 

 

 

Figure 3. Contribution of ICT subsectors to the sector’s total greenhouse gas footprint based on four 

independent assessments. Reprinted from Bieser et al. (2023) (31). 

Conversely, as shown in Figure 3, Bieser et 

al. compared four studies regarding the 

proportion of total ICT-sector GHG emissions 

attributable to end-user devices, data centers, 

and telecommunication networks (31). 

According to Figure 3, end-user devices are 

the dominant source of greenhouse gas 

emissions in the ICT sector, contributing 47–

54% of the total, with substantial additional 

contributions from data centers and 

communication networks. Projections by 

Schneider Electric (2024) show that, under 

business-as-usual trends, generative AI could 

generate up to 245 million tons of CO₂-

equivalent emissions annually by 2035, posing a 

serious threat to the achievement of global 

decarbonization targets (33-35). The rapid 

expansion of AI has rendered the transition from 

high-resource to efficient and sustainable 

paradigms more critical than ever. While giving 

rise to the “Green AI” movement, an emerging 

framework that treats environmental 

sustainability as a first-class objective on par 

with model accuracy. The computational 

demands of training advanced AI models have 

grown at an extraordinary pace (24, 36). 

According to one widely cited analysis, the 

compute required to train state-of-the-art models 

has been doubling roughly every 3–4 months, 

far outpacing the 18-month doubling cycle of 

Moore’s Law (37, 38). An extensive study of 

369 generative AI models estimated total energy 

consumption during training and inference at 

25–41 TWh, with associated CO₂ emissions of 

10–18 million metric tons (39). Over 99% of 

these emissions originate from facilities in the 

United States and China, the two leading 

countries in GAI development (40, 41). 

Continued growth at current rates would drive 

generative AI’s annual CO₂ emissions to 245 
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million tons by 2035, creating a significant 

challenge for worldwide decarbonization goals 

(42-44).  

2. Environmental Life-Cycle Assessment of 

Carbon Emissions from AI Systems 

The carbon footprint of an AI system extends 

far beyond electricity consumption during 

inference; it encompasses the entire lifecycle, 

spanning four main phases: embodied (or latent) 

carbon, training, inference, and end-of-life.  

Embodied carbon encompasses the 

greenhouse gas emissions associated with raw 

material extraction, hardware manufacturing 

(e.g., GPUs, TPUs, and servers), and data center 

construction prior to system operation (33, 45). 

Studies show that manufacturing a single high-

end GPU can emit up to 100 kg of CO₂e, with 

emissions reaching millions of tonnes at the 

scale of data centers containing thousands of 

units (35). Although often overlooked, this 

production phase can account for 20–30% of the 

total lifecycle carbon footprint in large models 

(32).  

The training phase is highly energy-intensive 

and has been a primary focus of Green AI 

research. Training a large language model such 

as GPT-3, for example, can consume more than 

1,287 MWh of electricity, equivalent to the 

annual consumption of approximately 120 U.S. 

households, and produce over 550 tons of CO₂ 

emissions (34, 35). 

However, the inference phase typically 

dominates total energy consumption, owing to 

the prolonged and continuous deployment of 

models in production environments. Although 

individual inference requests require minimal 

energy, their aggregation, often in the billions 

per day, means that inference can account for 

80–90% of a model’s lifetime energy use (46). 

For instance, a widely used conversational 

system like ChatGPT may consume as much 

electricity in a single day as 17,000 average 

households (29). 

Finally, the end-of-life phase presents 

significant challenges for recycling and 

disposing of AI hardware, with recycling rates 

remaining low owing to the incorporation of rare 

materials and intricate design features (47, 48). 

Globally, less than 20% of electronic equipment 

is properly recycled, leaving the majority to 

become e-waste that releases methane and 

heavy-metal contaminants (49). This lifecycle 

perspective highlights AI’s carbon footprint as a 

systemic issue needing intervention from 

hardware design to end-of-life management and 

recycling. (24). 

3. Main Factors Influencing the Carbon 

Footprint of AI Systems 

Research has shown that the carbon footprint 

of AI systems is highly variable and depends 

heavily on technical and infrastructure decisions. 

Four primary factors have been identified in this 

context: 

• Algorithm and Model 

Sparsely activated models, such as Mixture-

of-Experts (MoE) architectures, contain billions 

of parameters. However, they activate only a 

small fraction of the network during each 

inference, achieving up to 10× lower energy 

consumption than dense models of comparable 

accuracy (50, 51). However, implementing MoE 

architectures presents specific trade-offs. While 

they significantly reduce computational costs, 

they require high memory bandwidth to load the 

large number of parameters, which can 

complicate deployment on standard hardware. 

Therefore, the energy savings are most effective 

when paired with specialized hardware 

optimized for sparse operations. This efficiency 

arises from a dynamic routing mechanism, 

where a lightweight gating network selects 

which expert subnetworks to activate for a 

given input. For instance, the Switch 

Transformer, with 1.6 trillion parameters, 

routes each token to just 2–4 out of 2048 

experts, reducing inference-phase energy 
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use to roughly one-tenth that of an 

equivalent dense model (52). Similarly, 

xAI’s Grok-1 MoE model, with 314 billion 

parameters, activates only 25% of its 

weights per inference, yielding comparable 

energy savings and substantially lower 

operational carbon emissions (53). 

Experimental studies show that this 

energy reduction is substantial in both the 

inference and training phases, since 

gradients are computed only along active 

paths. This is because it significantly lowers 

the memory required to store them (54). For 

instance, the Mixtral 8x7B model, which 

employs a Mixture-of-Experts (MoE) 

architecture and outperforms LLaMA-2 70B 

in accuracy, consumes just 1/5 of the 

training energy and 1/8 of the inference 

energy required by the dense model (55). 

This paradigm enables green scaling—better 

performance without proportional energy 

increase—unlike dense models, which 

nearly double energy use when parameters 

double (56). 

Furthermore, combining MoE 

architectures with advanced optimization 

techniques, such as dynamic quantization 

and expert distillation, can improve 

inference energy efficiency by up to 15 

times (57). When coupled with custom 

accelerators designed for distributed training 

and inference, these advances mark a 

fundamental shift from “red AI” to “green 

AI” (57). Consequently, distributed 

architectures have evolved from purely 

technical solutions into a core sustainability 

strategy for substantially reducing the 

gLocal carbon footprint of AI systems (24, 

34). 

 

• Hardware 

While algorithmic optimization is vital, 

hardware largely determines AI’s carbon 

footprint, with over 80% of inference energy and 

a significant portion of training energy tied to 

processor type and efficiency. Although high-

performance GPUs such as NVIDIA’s A100 and 

H100 deliver exceptional computational 

capability, they also exhibit considerable power 

demands (up to 700 W per unit). Their dense 

architectures and high clock frequencies 

generate substantial heat, thereby increasing 

reliance on energy-intensive cooling systems 

(46). Custom accelerators like Google’s TPU v5 

and Cerebras CS-2, optimized for matrix 

operations and low-precision quantization, can 

be up to 50% more energy-efficient than 

comparable GPUs (58, 59) 

Furthermore, the shift from dense to sparse 

architectures has substantial implications at the 

hardware level. Accelerators like the Graphcore 

IPU and Groq LPU, supporting sparse matrix 

multiplication, allow MoE models to use only a 

fraction of computational units, cutting power 

consumption by up to 70%.(60). This 

architectural approach proves effective not only 

during inference but also during training, as it 

lowers the memory required for gradient storage 

and improves overall memory bandwidth 

utilization (61). Finally, the embodied carbon of 

hardware, emissions associated with raw 

material extraction, manufacturing, and 

transportation, is becoming an increasingly 

significant component of the AI lifecycle. 

Producing a single A100 GPU, for example, 

generates roughly 120 kg of CO₂-equivalent, 

which accounts for only about 10% of its total 

carbon footprint over an estimated 10,000 hours 

of operation (62). By contrast, custom 

accelerators manufactured using 3 nm process 

technologies and incorporating recycled 

materials can reduce embodied carbon by up to 

30% (63). These advances, along with policies 

promoting longer hardware lifespans and 

improved e-waste recycling, mark a shift from a 

“performance at any cost” approach. This new 
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focus on “sustainability by design” offers a 

practical framework to reduce AI’s carbon 

footprint at the infrastructure level (64). 

 

• Data center efficiency 

Beyond the efficiency of individual chips and 

models, the broader infrastructure are crucial. 

Specifically, data center efficiency is commonly 

assessed using the Power Usage Effectiveness 

(PUE) index, defined as the ratio of a data 

center’s total energy consumption to the energy 

consumed directly by its computing equipment 

(IT load). While a PUE of 1 represents ideal 

efficiency, the global average in 2023 was 

approximately 1.58 (65, 66). In contrast, modern 

cloud data centers operated by companies such 

as Google, Microsoft, and Meta achieve 

substantially higher efficiencies, operating up to 

1.4 times more efficiently than conventional 

facilities with PUE values near 1.59; for 

example, Google reported an average PUE of 

1.10 in 2024 (67). These improvements stem 

from advances like direct-to-chip liquid cooling, 

free-air cooling in cold climates, and AI-driven 

workload orchestration, which can cut cooling 

energy—usually 30–50% of total use—by up to 

70%(68).  

Lowering PUE significantly reduces 

carbon emissions. For example, cutting PUE 

from 1.8 to 1.2 in a 100-MW data center can 

save about 60,000 tons of CO₂ annually—

equal to emissions from 13,000 cars (69). 

Leading companies use immersion cooling 

and waste-heat recovery to heat buildings or 

generate electricity. For example, Google’s 

Finland facility recovers up to 90% of 

thermal energy, supplying heat to the local 

district network (70). Also, modular data-

center designs and AI-based predictive load 

management allow operators to power down 

idle servers, improving peak-shaving 

performance by as much as 40% (71). 

Finally, the standardization of PUE and 

its transparent reporting as part of 

sustainability metrics has become an 

industry-wide imperative. Initiatives like 

The Green Grid and ISO 30134 now require 

organizations to annually report their PUE 

metrics to improve data center energy 

efficiency and sustainability. In addition, 

platforms such as Google Cloud Carbon 

Footprint enable users to estimate carbon 

emissions based on actual PUE values (72). 

Such transparency not only drives 

competition among providers to lower 

energy consumption but also empowers 

customers to select cloud services with the 

smallest carbon footprint. Consequently, 

enhancing data center efficiency has evolved 

from a competitive advantage into both an 

environmental and economic necessity, 

playing a pivotal role in advancing the 

objectives of ‘green AI (24, 34). 

• Geographic Location and Energy Mix 

The power grid’s energy mix and data center 

location critically affect AI’s carbon footprint. 

CO₂ emissions per kilowatt-hour can vary 5 to 

10 times depending on fossil fuel or renewable 

energy dominance (73).  

Training a large language model in a wind-

rich region like Iowa (50 g CO₂/kWh) produces 

a much lower carbon footprint than in coal-

dependent areas like Poland (750 g CO₂/kWh) 

(74, 75). This disparity accumulates during 

training and inference, where a popular model 

handling billions of daily requests can emit tens 

of thousands of tons less CO₂ annually when 

deployed in a low-carbon region. Leading 

technology companies have mitigated their 

environmental impact by adopting location-

aware deployment strategies and purchasing 

renewable energy certificates (RECs). For 

example, Google has situated more than 90% of 

its data centers in regions with a high share of 

clean energy, such as Finland, Sweden, and 
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Quebec, and has achieved operational carbon 

neutrality through renewable power purchase 

agreements (PPAs) (76). Microsoft has similarly 

reduced emissions by up to 30% by time-shifting 

computational workloads to periods of peak 

solar and wind power generation. These 

practices show that data center location is a key 

sustainability strategy, capable of cutting AI’s 

carbon footprint by up to 90% and advancing the 

shift toward green AI (74). 

4. Operational Solutions for Sustainable AI 

The Green AI movement promotes practical, 

multi-layered strategies to reduce AI’s carbon 

footprint across its lifecycle, focusing on 

measurement, transparency, and optimization of 

models, data, and infrastructure (77). The 

foundational step in this process is the precise 

measurement and transparent reporting of 

energy consumption and associated carbon 

emissions. Several tools enable real-time 

assessment of AI’s environmental impact by 

considering data center PUE, energy mix, and 

hardware. Code Carbon is an open-source 

Python library that estimates CO₂e emissions by 

tracking energy use and regional carbon 

intensity. ML CO₂ Impact offers a framework to 

estimate and compare emissions from training 

and running models. The Experiment Impact 

Tracker similarly records CO₂e emissions per 

experiment by monitoring hardware energy 

consumption in real time (78, 79). 

At the model optimization level, techniques 

such as knowledge distillation, pruning, 

quantization, and sparse architectures play a 

pivotal role. For instance, knowledge distillation 

transfers knowledge from a large model 

(Teacher) to a smaller model (Student), 

potentially reducing energy consumption by up 

to 90% while incurring only a 1–2% loss in 

accuracy (80, 81). Similarly, data-centric AI 

approaches, which emphasize improving data 

quality, intelligent feature selection, and active 

sampling, can achieve comparable performance 

using approximately 50% less data, thereby 

lowering computational demands (82, 83). 

Beyond algorithmic strategies, adopting green 

infrastructure represents a highly effective 

operational measure. Deploying models in data 

centers powered entirely by renewable energy 

(e.g., Google’s facilities in Finland or 

Microsoft’s in Sweden) and utilizing advanced 

cooling technologies such as liquid or 

immersion cooling can reduce operational 

carbon footprints by as much as 95% (84). 

Integrating algorithmic optimization, 

transparency, and sustainable infrastructure can 

reduce AI’s carbon footprint by up to 1000-fold, 

creating a strong foundation for sustainable AI 

development (34). These measures are not only 

environmentally necessary but also provide a 

strategic advantage for both industry and the 

scientific community (35, 64). 

Conclusion 

The results of this study demonstrate that the 

carbon footprint of AI is substantial and rapidly 

increasing. This growth results from rising 

computational demand, the AI lifecycle (from 

embodied carbon to end-of-life), and 

infrastructure factors like data center efficiency, 

energy mix, and hardware. As the global 

community endeavors to transition toward a 

low-carbon economy, the rapid expansion of 

such energy-intensive technologies poses a 

significant challenge to these efforts. 

The findings distinguish “red AI,” 

prioritizing accuracy at any cost, from “green 

AI,” which balances efficiency and accuracy—

offering both a challenge and an opportunity to 

reshape AI development. A key insight from this 

review is the critical role of choice. The carbon 

footprint of an AI model is not a fixed, inherent 

property but rather the outcome of deliberate 

decisions made by researchers and engineers. 

Evidence suggests that strategic selection of 

algorithms, hardware, data centers, and 

geolocations can reduce carbon emissions by up 

to three orders of magnitude .This highlights the 

promising potential to mitigate environmental 
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impacts without impeding technological 

advancement. The Green AI movement provides 

a practical framework with strategies for 

measurement, model design, data management, 

and infrastructure optimization. 

Despite these advances, significant 

challenges remain. The lack of transparency 

among major technology companies regarding 

the energy consumption of their operations 

complicates efforts to assess the carbon footprint 

of the industry as a whole. Additionally, the 

research community’s predominant focus on the 

model training phase has resulted in relative 

neglect of the inference stage, which, at scale, 

can account for a substantial portion of 

energy use. This study highlights that 

sustainability should be considered a 

primary evaluation criterion for AI 

systems—alongside accuracy, speed, and 

cost. Collaboration among scientists, 

industry stakeholders, and policymakers is 

essential to establish standards for 

transparent reporting and to incentivize the 

development and deployment of green AI. 

Ultimately, the future of AI must not only be 

intelligent but also sustainable and 

responsible. 

Recommendations for Future Work 

Based on this review, three immediate 

actions are proposed. Standardization: 

Policymakers should establish standardized 

metrics for reporting AI carbon intensity (e.g., 

kg CO₂e per query). Transparency: Technology 

companies should disclose energy mixes and 

Power Usage Effectiveness (PUE) data for 

specific model training runs rather than relying 

solely on annual averages. Inference focus: 

Future research should prioritize optimization of 

the inference phase, as it accounts for the 

majority of lifecycle emissions in widely 

deployed models. 
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